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Heterogeneous kinetics are shown to differ drastically from homogeneous 
kinetics. For the elementary reaction A + A--* products we show that the dif- 
fusion-limited reaction rate is proportional to t-h[A] 2 or to [A] x, where 
h = 1 - d,/2, X =  1 + 2/d, - (h - 2)(h-  1 ), and d s is the effective spectral dimen- 
sion. We note that for d d~.= 1, h=  1/2 and X=3,  for percolating clusters 
d s = 4/3, h = 1/3 and X = 5/2, while for "dust" d e, < 1, 1 > h > 1/2 and oo > X > 3. 
Scaling arguments, supercomputer simulations and experiments give a con- 
sistent picture. The interplay of energetic and geometric heterogeneity results in 
fractal-like kinetics and is relevant to excitation fusion experiments in porous 
membranes, films, and polymeric glasses. However, in isotopic mixed crystals, 
the geometric fractal nature (percolation clusters) dominates. 

KEY WORDS: Fractal; random walkers; reaction rates; spectral dimension; 
percolation; energy disorder; porous membranes; excitation fusion. 

1. I N T R O D U C T I O N  

A fractal - l ike  k inet ics  is descr ibed  here, i n c l u d i n g  scal ing a r g u m e n t s ,  

s imula t ions ,  a n d  e x p e r i m e n t s  o n  exc i ton  fusion.  W e  believe t ha t  these 
represen t  a new  ins igh t  which  m a y  be the key to u n d e r s t a n d i n g  l o w - d i m e n -  
s ional ,  e.g., h e t e r o g e n e o u s  t r a n s p o r t  a n d  chemica l  kinetics.  T h e y  also yield 

a new a p p r o a c h  t o w a r d  the c h a r a c t e r i z a t i o n  of d i so rde red  m e d i a  via  laser  

exc i t a t ion  a n d  luminescence ,  wi th  a poss ib le  ex t ens ion  t o w a r d  
b ioexc i t a t ions  tha t  r a n g e  f rom p h o t o s y n t h e t i c  a n t e n n a  to ne rve  cells a n d  
the bra in .  W e  n o t e  tha t  p r o b a b l y  m o r e  t h a n  90 % of the n a t u r a l  a n d  m a n -  
m a d e  chemica l  reac t ions  are he t e rogeneous ,  i.e., occur  at  a n  in ter face  wi th  
a n  effective d i m e n s i o n  lower  t h a n  3 (as  in  a f a m o u s  c a r t o o n ,  it is a voyage  
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in 2.5 dimensions "Mosaic," January 1985). As examples of 
heterogeneous reactions we mention industrial catalysis (involving pow- 
ders, porous materials, etc.), biochemical reactions (membranes, etc.), 
geochemical (dirt, porous rock), atmospheric (dust, pollutants), elec- 
trochemical (rough electrodes) and even interstellar ones (formation of 
nucleic acids on grains of ice and/or dust). In addition we mention here 
some heterogeneous photophysical reactions, such as electron-hole recom- 
bination on surfaces and in amorphous materials, photoelectron trapping, 
and, finally, exciton trapping and exciton annihilation (fusion), for which 
we give experimental evidence. Little is really known on the basis of 
heterogeneous kinetics except that "frequently the rate-determining step is 
the actual reaction on the surface. ''(~) Furthermore, "heterogeneous reac- 
tions present a challenge to several branches of science--chemical kinetics, 
surface, and solid state physics, and surface chemistry; this is a good exam- 
ple of a problem requiring interdisciplinary study and research. ''(~) We star- 
ted theoretical, experimental, and simulation studies in this direction over 
ten years ago. (2) The key realization was that the basic property of interest 
is the effectively explored space per unit time, the "efficiency" of the ran- 
dom walker, which is the time derivative of the "mean number of distinct 
sites visited," •S/•t (the original definition was slightly different, i.e., S/t). 
We note here that 19th century chemical kinetics was similarly defined, i.e., 
the rate constant k was proportional to a "reaction volume" per unit time 
(explicitly, a cylinder whose base is the "reaction cross section" and whose 
height is the mean free path). (~ Interestingly enough, when 
Smoluchowski (3) dealt with diffusion-limited kinetics (in three-dimensional 
homogeneous space) he effectively replaced the "mean free path" by the 
"diffusion length" of the random walker. It was not possible to replace the 
Maxwellian cylinder with a "diffusion sphere" as the latter is not linear in 

Tablel .  Diffusion-Limited Elementary Reaction: A + A ~ P r o d u c t s  

Kinetics Homogeneous  Heterogeneous (low dim.)a 

dA dA 
Transient d t - K A Z  - - ~ = K o t  hA2, 0 ~ < h < l  

( batch ) 
2 - h  

Steady state Rate = K A  2 Rate = K o A x, X =  1 - h 

(steady source) 

= Note. For the reaction order X we have 2 ~< X <  ~ ,  while for the heterogeneity exponent h 
we have h = 1 -  d=/2, where the spectral dimension, d= ~< 2 for fractals. For simplicity, CA is 
designated by A. 
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Fig. 3. Schematic representation of reaction in one-dimensional pores of artificial membrane.  
Note that for the elementary binary reaction ' A + A ~ products one gets h = 1/2 and an effec- 
tive reaction order X =  3 (three, not two), provided that the products diffuse through the 

walls. 

2. THEORY 

The typical reaction of interest is the bimolecular elementary reaction: 

A + B ~ products ( 1 ) 

which has a textbook macroscopic description: 

dCA 
- kCA CB (2) 

dt 

where C(t) is the reactant concentration and the "rate constant" k is a con- 
stant not only in concentration but also in time. The stochastic approach of 
Smoluchowski (3) (1917), Chandrasekhar (7) (1943), Noyes (8~ (1961), van 
Kampen (9) (1982), and others (see Calef and Deutsch, (~~ 1983), indeed 
derives a time independent rate constant k for long times (t ~ ~ ), which is 
proportional to the microscopic diffusion constant D: 

k ~ D ,  t---, ~ (3) 

The standard derivation of Smoluchowski and others starts with the case 
where the reactant molecules A are random walkers and B are "sitters" 
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(traps). This is then extended to the case where both A and B are walkers, 
via the concept of "relative diffusion" (DA + DB), which is rigorous only for 
the two-body approximation (one A and one B). The stochastic approach 
is based on the mean square displacement, which is linear in time for 
homogeneous systems (and defines D as a proportionality constant). Alter- 
native approaches can be based on the first passage time (the main topic of 
this symposium) and on the exploration space S( t )  ("the mean number of 
distinct sites visited"). 

The microscopic quantity, S( t ) ,  has been shown to describe the 
macroscopic rate "constant" (coefficient) k, for both homogeneous and 
locally heterogeneous media. Specifically, it has been shown that 

dS 
k ~ - -  (4)  

dt 

again giving a simple linear relationship between the macroscopic rate coef- 
ficient k and the microscopic quantity e = dS/dt ,  ~ being the "efficiency" of 
the walker (Argyrakis and Kopelman, (11'12~ 1979, 1980; De Gennes, (5) 
1983). Equation (4) is strictly true for low concentration (CB ---, 0) and for a 
superlattice of B traps, but works well for realistic times and B concen- 
trations (Kopelman, ~1/ 1976; Klafter et al., ~3) 1984). 

Scaling conjectures (Klymko and Kopelman, (14) 1983; Kang and 
Redner, (15) 1984) have generalized [Eq. (4)] from the "trapping" reactions 
to the general reaction, where both A and B are random walkers, and, as a 
special case, to the reaction 

2A --+ products (5) 

This reaction has the textbook rate equation, 

dCA 2 
-dt = k C A  (6) 

We note that under a s teady  s ta te  rate (R) of reactant production, one has 

R = k C  2 (7) 

which is valid only for a time-independent coefficient, k. 
Does Eq. (4) produce a time-independent rate constant? The answer is 

yes for a coherent motion of A ( S ~ t  and e=cons t )  as well as for three- 
dimensional isotropic spaces, where it has been shown (Montroll and 
Weiss, (16) 1965) that a is an asymptotic constant 

S = a t, t --+ oo (8) 
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so that 
k~a (9) 

However, for locally heterogeneous media, S = f(t). Heterogeneities in 
the geometry or specific time distributions of hops result in a relationship: 

S ~  t d'/2, d~,<2 (10) 

where ds is the "spectral dimension" (Alexander and Orbach, ~17) 1982), 
which for fractal objects is a second dimension (in addition to the "fractal" 
dimension, Mandelbrot, ~4) 1983). ds may also be an "effective spectral 
dimension," for energy disorder that is reflected by an anomalous waiting 
time distribution (Sherr and Montroll, (~8~ 1974) or by a specific hopping 
rate law (Argyrakis, Anacker, and Kopelman, (~9) 1984). From Eq. (10) it is 
obvious that e = ds/dt is no longer constant in time, but 

where 

e ~ t  h, 0~<h~<l (11) 

h = l - d j 2 ,  d , < 2  (12a) 

h = 0 ,  d , > 2  (12b) 

We notice that (12b) is only valid for d = d s = 3 ,  a three-dimensional 
Euclidean (homogeneous) medium, d =  ds = 2 is a well-known borderline 
case (h~0).  The important result is thus 

k~t  -h, 0 ~ < h ~ l  (13) 

where Eqs. (12) still hold. 
It can also be shown (Anacker and Kopelman, ~2~ 1984) that, for the 

steady state case, Eq. (7) should be replaced by 

2 - h  
R=koC~, X = l + 2 / d s - l _  h (14) 

giving a new interpretation to the "reaction order" X. 
Some special cases are the following: 

(a) One-dimensional pore ( d = d s =  1). Here h = 1/2 and X =  3 (an 
unexpected result see below). 

(b) Percolating clusters. Here (Alexander and Orbach, (17~ 1982), for 
all d, d~4/3 and thus h =  1/3 and X =  5/2. The same is true for DLA's 
(diffusion-limited aggregates, L. Sander, (21) 1985) and other random frac- 
tals (Leyvraz and Stanley,(22) 1983). 
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Table II. Heterogenei ty  Exponents (h) 

Simulation Theory 

Sierpinski gasket (two dimensions) 
Sierpinski web (three dimensions) 
Percolation cluster (two dimensions) 
Percolation cluster (three dimensions) 

0.31 0.32 
0.23 0.23 
0.33 0.34 
0.32 0.33 

(c) Sierpinski Gasket (Mandelbrot, (4) 1983): Here ds = 1.36, h = 0.32, 
and X =  2.45. 

(d) "Dust," which is defined by 0 < d  s < l  or 0 < h < 1 / 2 .  Here 
3 < X < ~ .  

Finally it is important that as soon as d <  3, one finds that d, ~< 2. This 
"empirical" rule is of utmost importance, as it requires replacing equations 
(8) and (9) by Eqs. (10)-(14), i.e., a fractal-like behavior of the kinetics. We 
note again that for all fractals d, ~< dj. 

3. S I M U L A T I O N S  

Most simulations have been performed (2~ on a cyber 205 "super- 
computer." These simulations have been our most direct tool for testing the 
scaling hypotheses. Here we just summarize the results. The relations 
h = 1 - d s / 2  (ds~2),  for transient reactions, has been shown to work for (a) 
percolation clusters, where d,=4/3 ,  for two- and three-dimensional 
incipient clusters as well as for long-range incipient percolation clusters; (b) 
diffusion-limited aggregates (DLA); (21) (c) Sierpinski gaskets (in two and 
three dimensions), (d) energy disordered, geometrically ordered lattices 
(Table II). Furthermore, we have tested out the steady state relations, X =  
1 + 2/d,= ( 2 - h ) / ( 1 - h ) .  The results are given in Table III. We note that 

Table III. Ef fect ive React ion Order (X) 

X Simulation a Theory 

Cubic (three dimensions) X = 2.00 J( = 2.00 
One dimension J( = 3.00 J( = 3.00 
Sierpinski (two dimensions) X = 2.45 X = 2.46 
Percolation cluster J( = 2.51 X = 2.50 

Note. The simulation values are obtained by extrapolation to low density (A 40). 
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for the energetically disordered lattices we have modified the "uphill" jump 
probability by exp( -AE/RT) ,  where AE is the energy barrier, T the tem- 
perature and R the "gas constant." For the geometrically disordered media, 
the simulated X values are consistent with our analytical (low-density) (2~ 
results to within three significant figures! In addition, we have shown that 
the energetically disordered lattices do give a fractal-like behavior, i.e., a 
constant h that does not vary much with time, but is a function of AE/RT. 

4. EXPERIMENTS 

Our experiments rely mainly on excitation fusion reactions in dis- 
ordered media. The heterogeneous medium (i.e., membrane) has an effec- 
tive dimension of less than 3, and thus a spectral dimension of less than 2. 
The resulting anomalous microscopic diffusion leads to a resulting 
anomalous macroscopic kinetics. Specifically we study excitation (exciton) 
reactions, triple + triplet-~ singlet, as both the reactant concentrations and 
the product (reaction rate) can be monitored continuously in time via the 
resulting phosphorescence (proportional to triplet population) and the 
delayed fluorescence (proportional to singlet population, which is propor- 
tional to the reaction rate). We study four kinds of fractal-like media. 

4.1. Isotopic Mixed Crystals of Naphthalene 

In these ideal alloys (C10Hs-CIoDs)  the random substitutional dis- 
order assures us of getting genuine percolation clusters of naphthalene 
(CloH8) in naphthalene-d8 (CloD8). Energetic considerations (due to zero- 
point energy) confine the excitations entirely to the naphthalene clusters (z) 
(at the experimental temperature of 2 K). Thus at the critical percolation 
concentration (2'4'14"17'~9) most of the reactions are confined to incipient per- 
colation clusters, which are well known to be fractals with a spectral 
dimension of 4/3. This ideal disordered system is the only system where 
fractal structure is expected down to (but excluding) the molecular level 
(we note that these alloy crystals are of the highest quality and chemical 
purity(Z,14)). 

For the triplet excitons the effective critical percolation concentration 
is at about 8 % naphthalene mole fraction (fourth-nearest-neighbor connec- 
tivity with a square lattice topology(2)). In Figure 4 we plot the rate coef- 
ficient k vs. time on a log log scale. We note that k = - IdCg/dt)/C~l and 
that the phosphorescence P is proportional to CA, while the delayed 
fluorescence F is proportional to the annihilation rate IdCA/dtl. For 
classical kinetics we expect the rate coefficient k to be a constant in time. 
Indeed, at an alloy concentration (16%) well above the critical concen- 



194 Kopelman 

100 

~x I0 -L 
i, 

I0-3 

[] 
[] 

1 2 3 

TIME (ms) 

Fig. 4. Rate coefficient k =-F/P 2 vs. time (msec) on a log-log plot for triplet exciton fusion 
(at 2 K) on naphthalene-h8 in naphthalene-d8 perfect crystalline samples. Top to bottom: 16, 
14, 12, 10, 8, 6, 4, 3, 2mol %. The straight lines are fits to the equation k==-F/P2~t h with 
slope (-h). Curves have been shifted for clarity. 

trat ion ( 8 % )  we observe such clalssical behavior,  i.e., a horizontal  line 
for k -  F / P  2 vs. time (actually on a l o g q o g  scale, which is equivalent). On  
the other hand, for the critical alloy concentra t ion ( 8 % )  we observe 
the absolute slope (h) to be 0.35_+0.03, in excellent agreement  with 
the theoretical value: h = 1 - d  j 2  = 1 -  (4/3)/2 = 0.33 (or 0.37, including 
corrections due to finite clusters. (s'19~ We note that with no free parameters  
we got an experimental spectral dimension d s = 1.30 _+ 0.06, i.e., within 3 % 
of the theory). Above the critical concentra t ion we observe a "fractal to 
classical crossover with time," i.e., at early times a slope of  about  0.35, 
crossing over to a zero slope at longer time, as expected. (23'24) On  the other 
hand, below the critical alloy concentra t ion (i.e., at 2 % - 6 % )  we observe 
the opposite effect of "saturat ion" with time, as the correlat ion length 
approaches the finite cluster size. This is expected (25~ for "dusts." These 
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transient kinetics data (26'27) are also consistent with anomalous large reac- 
tion orders: X =  2.5 at criticality (see Table III) and Z >  10 at lower alloy 
concentrations, (27'28) as expected. (z~ 

4.2. Naphthalene Aggregates in Porous Membranes 

Are the domains inside porous polymeric membranes, porous glass 
and filter papers fractal-like? Many such claims have been made recently, 
from porous alumina to enzyme surfaces. (29) The fractal dimension of 
porous vycor (glass) has been claimed ~3~ to be about 1.7, even though the 
exact "fractal nature" of porous glass is under dispute/31/We show below 
the fractal-Iike reaction kinetics of excitation fusion on naphthalene 
agrregates embedded in such porous materials and membranes. While the 
interpretation of the data may involve both geometrical and energetical 
fractal-like aspects, the reaction kinetics is far from the classical picture. 
Figure 5 shows an 0.2/~m porous nylon membrane (Gelman Science, Inc.). 
Figure6 shows a log k vs. log t plot of the excitation kinetics of 
naphthalene triplets in such a membrane embedded with naphthalene. 
Again we see the clear-cut fractal-like behavior, with h = 0.21. We note that 
for the classical picture to be valid one requires that h = 0 ,  that is, a 
horizontal line of ink. Similar plots have been obtained for acetate mem- 
branes with various pore size distributions, as well as for porous (Vycor) 
glass (h = 0.44~see Fig. 7). The effective spectral dimension is thus about 
d~ rr= 1.1, which is consistent with the somewhat higherfractal dimension of 
1.7. Similar results were obtained for cellulose filter paper and glass filter 
paper. In the first the fractal-like kinetics is found at 4 K but not at 80 K. 
This implies that most of the "fractal-like" aspects can be attributed to 
energetic rather than geometric disorder. The potential energy surface itself 
may include fractal-like canyons, etc., causing the reacting excitons to 
preferentially move in these fractal-like domains till they react. At low tem- 
peratures the energetic restrictions may be more important than the 
geometrical ones. Overall, at least qualitatively, the samples seem to obey 
the subordination law,~13~ according to which the "real" (geometrical) spec- 
tral dimension and the effective spectral dimension, due to energy disorder, 
simply multiply. (The Klafter et al. (13) model for energy disorder is based 
on continuous times random walks.) 

4.3. Naphthalene Aggregates in Polymeric Glasses 

Samples of polymethylmethacrylate (PMMA) containing naphthalene 
up to 20% by weight show a mild fractal-like behavior at higher 
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Fig. 5. Nylon membrane (Nyl 100, 0.2 #m), 7000 x enlargement. 
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-f 
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~ 7  

LN (TIME) SEC 

Fig. 6. Rate coefficient k =-- F / P  2 vs. time on log-log plot for triplet exciton fusion (at 4 K) on 
naphthalene embedded in nylon porous membrance (see Fig. 5). The fitted slope (straight 
line) gives h = 0.21. 

o 

' -~! o '- ' -o! ~ ' ' ~! o 
LN(TINE) (SEC) 

Fig. 7. Rate coefficient k =-F/P 2 vs. time on log-log plot for tripled exciton fusion (at 6 K) 
on naphthalene embedded in porous vycor glass (0.003 gin). Fitted slope gives h = 0.44. 
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temperatures(32~ (h=0.1-0.3). The relative roles of energetic and 
geometrical disorder are still under investigation for this doped (non- 
porous ) "plexiglass." 

4.4. Naphthalene Films and Energetic Disorder 

These films were deposited at very low temperatures (50 K) from the 
vapor. The low-temperature samples (6K) reveal clear-cut fractal-like 
kinetics (h = 0.45). It is obvious that the energetic disorder dominates the 
behavior of these samples. We believe that the fractal-like kinetics occurs in 
domain boundaries, which have lower excitation energies, as evidenced by 
spectroscopic studies, and thus really act as canyonlike energy funnels, first 
collecting the excitations from the semicrystalline domains (energy 
plateaus) and then channeling the excitations into these ramified (fractal- 
like) domains toward reaction (annihilation). Again, the effective spectral 
dimension of this sample is about 1.1, similar to those of the porous glass 
and glass filter paper samples. Thus the question arises whether all 
naphthalene embedded porous membranes are more sensitive to the 
energetic disorder than to the geometrical shape. However, comparisons of 
various membranes, and especially those of glass filter paper to cellulose 
filter paper, reveal that there definitely is a geometric fractal component in 
the fractal-like kinetics of some of the samples. For instance, our tentative 
conclusion is that the pores of glass filter-paper indeed are fractal-like while 
those of cellulose filter-paper appear not to have a fractal geometry. 

5. S U M M A R Y  

A consistent picture of fractal-like chemical kinetics appears to emerge 
from the combination of scaling theory, Monte Carlo simulations, and 
exciton fusion reactions. The percolation cluster experiments, together with 
the relevant simulations, show the striking features of heterogeneous reac- 
tions in fractal-like geometries, with rate coefficients that decrease 
asymptotically with time and with effective reaction orders that can be sky- 
high for a simple (elementary) binary reaction. 

Energetic disorder, by itself or in tandem with geometric 
heterogeneities, leads to fractal-like effects that are hardly separable from 
purely geometric effects. In fact, the Scher Montroll model (18~ of transport 
in disordered media is another representation of the same phenomenon. 
The mathematical waiting time distribution ("fractal time ''(33~) is another 
way of describing a fractal-like potential energy surface. 

Finally, one can use the fractal-like kinetics, exhibiting anomalous 
luminescence decays or equivalent features, as a diagnostic probe for 
spatial and/or energetic heterogeneity of the medium of interest. 
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NOTE ADDED IN PROOF 

Generalizations to steady-state A + B reactions are under study. 
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